Direct metal laser sintering

Direct metal laser sintering (DMLS) is an additive metal fabrication technology developed by EOS out of Munich, Germany, sometimes also referred to by the terms selective laser sintering (SLS) or selective laser melting (SLM). The process involves use of a 3D CAD model whereby a .stl file is created and sent to the machine’s software. A technician works with this 3D model to properly orient the geometry for part building and adds supports structure as appropriate. Once this "build file" has been completed, it is "sliced" into the layer thickness the machine will build in and downloaded to the DMLS machine allowing the build to begin. The DMLS machine uses a high-powered 200 watt Yb-fiber optic laser. Inside the build chamber area, there is a material dispensing platform and a build platform along with a recoater blade used to move new powder over the build platform. The technology fuses metal powder into a solid part by melting it locally using the focused laser beam. Parts are built up additively layer by layer, typically using layers 20 micrometres thick. This process allows for highly complex geometries to be created directly from the 3D CAD data, fully automatically, in hours and without any tooling. DMLS is a net-shape process, producing parts with high accuracy and detail resolution, good surface quality and excellent mechanical properties.

Contents

Benefits

DMLS has many benefits over traditional manufacturing techniques. Speed is the most obvious because no special tooling is required and parts can be built in a matter of hours. Additionally, DMLS allows for more rigorous testing of prototypes. Since DMLS can use most alloys, prototypes can now be functional hardware made out of the same material as production components.

DMLS is also one of the few additive manufacturing technologies being used in production. Since the components are built layer by layer, it is possible to design internal features and passages that could not be cast or otherwise machined. Complex geometries and assemblies with multiple components can be simplified to fewer parts with a more cost effective assembly. DMLS does not require special tooling like castings, so it is convenient for short production runs.

Applications

This technology is used to manufacture direct parts for a variety of industries including aerospace, dental, medical and other industries that have small to medium size, highly complex parts and the tooling industry to make direct tooling inserts. With a build envelop of 250 x 250 x 185 mm, and the ability to ‘grow’ multiple parts at one time, DMLS is a very cost and time effective technology. The technology is used both for rapid prototyping, as it decreases development time for new products, and production manufacturing as a cost saving method to simplify assemblies and complex geometries.[1]

Constraints

The aspects of size, feature details and surface finish, as well as print through error in the Z axis may be factors that should be considered prior to the use of the technology. However, by planning the build in the machine where most features are built in the x and y axis as the material is laid down, the feature tolerances can be managed well. Surfaces usually have to be polished to achieve mirror or extremely smooth finishes.

For production tooling, material density of a finished part or insert should be addressed prior to use. For example, in injection molding inserts, any surface imperfections will cause imperfections in the plastic part, and the inserts will have to mate with the base of the mold with temperature and surfaces to prevent problems.

In this process metallic support structure removal and post processing of the part generated is a time consuming process and requires use of EDM and/or grinding machines having the same level of accuracy provided by the RP machine.

When using rapid prototyping machines, .stl files, which do not include anything but raw mesh data in binary (generated from Solid Works / Catia, and other major CAD programs) need further conversion to .cli & .sli files (the format required for non stereolithography machines)[2]. Software converts .stl file to .sli files, as with the rest of the process, there can be costs associated with this step.

Materials

Currently available alloys used in the process include 17-4 and 15-5 stainless steel, maraging steel, cobalt chromium, inconel 625 and 718, and titanium Ti6Alv4. Theoretically, almost any alloy metal can be used in this process once fully developed and validated.

See also

References

External links